domingo, 25 de febrero de 2018

 .                                                  Interruptor


Un interruptor eléctrico es un dispositivo que permite desviar o interrumpir el curso de una corriente eléctrica. En el mundo moderno sus tipos y aplicaciones son innumerables, desde un simple interruptor que apaga o enciende una bombilla, hasta un complicado selector de transferencia automático de múltiples capas, controlado por computadora.


Su expresión más sencilla consiste en dos contactos de metal inoxidable y el actuante. Los contactos, normalmente separados, se unen mediante un actuante para permitir que la corriente circule. El actuante es la parte móvil que en una de sus posiciones hace presión sobre los contactos para mantenerlos unidos
SPST-Switch.svg



                     Fotorresistencia

Un fotorresistor o fotorresistencia es un componente electrónico cuya resistencia disminuye con el aumento de intensidad de luz incidente.​ Puede también ser llamado fotoconductor, célula fotoeléctrica o resistor dependiente de la luz, cuyas siglas, LDR, se originan de su nombre en inglés light-dependent resistor. Su cuerpo está formado por una célula fotorreceptora y dos patillas. En la siguiente imagen se muestra su símbolo eléctrico.

Light-dependent resistor schematic symbol.svg

El valor de resistencia eléctrica de un LDR es bajo cuando hay luz incidiendo en él (puede descender hasta 50 ohms) y muy alto cuando está a oscuras (varios mega ohmios).

                                Termistor


Un termistor es un sensor de temperatura por resistencia. Su funcionamiento se basa en la variación de la resistividad que presenta un semiconductor con la temperatura. El término termistor proviene de Thermally Sensitive Resistor. Existen dos tipos de termistor:

  • NTC (Negative Temperature Coefficient) – coeficiente de temperatura negativo
  • PTC (Positive Temperature Coefficient) – coeficiente de temperatura positivo (también llamado posistor).

Cuando la temperatura aumenta, los tipo PTC aumentan su resistencia y los NTC la disminuyen.

Resultado de imagen para termistor
                        resistencia


Resitor.jpgSe denomina resistencia (sobre todo en España) o resistor (en algunos países de Hispanoamérica, aunque también se usa resistencia en el argot eléctrico y electrónico) al componente electrónico diseñado para introducir una resistencia eléctrica determinada entre dos puntos de un circuito eléctrico. En otros casos, como en las planchas, calentadores, etc., se emplean resistencias para producir calor aprovechando el efecto Joule. Es un material formado por carbón y otros elementos resistivos para disminuir la corriente que pasa. Se opone al paso de la corriente.

La corriente máxima y diferencia de potencial máxima en una resistencia viene condicionada por la máxima potencia que pueda disipar su cuerpo. Esta potencia se puede identificar visualmente a partir del diámetro sin que sea necesaria otra indicación. Los valores más comunes son 0.25 W, 0.5 W y 1 W.

Existen resistores cuyo valor puede ser ajustado manualmente llamados potenciómetros, reóstatos o simplemente resistencias variables. También se producen dispositivos cuya resistencia varía en función de parámetros externos, como los termistores, que son resistores que varían con la temperatura; los varistores que dependen de la tensión a la cual son sometidos, o las fotorresistencias que lo hacen de acuerdo a la luz recibida.     


Resistor symbol America.svg









                         capacitor

Resultado de imagen para capacitorUn condensador eléctrico (también conocido frecuentemente con el anglicismo capacitor, proveniente del nombre equivalente en inglés) es un dispositivo pasivo, utilizado en electricidad y electrónica, capaz de almacenar energía sustentando un campo eléctrico.​ Está formado por un par de superficies conductoras, generalmente en forma de láminas o placas, en situación de influencia total (esto es, que todas las líneas de campo eléctrico que parten de una van a parar a la otra) separadas por un material dieléctrico o por la permitividad eléctrica del vacío.3​ Las placas, sometidas a una diferencia de potencial, adquieren una determinada carga eléctrica, positiva en una de ellas y negativa en la otra, siendo nula la variación de carga total.

Aunque desde el punto de vista físico un condensador no almacena carga ni corriente eléctrica, sino simplemente energía mecánica latente, al ser introducido en un circuito, se comporta en la práctica como un elemento "capaz" de almacenar la energía eléctrica que recibe durante el periodo de carga, la misma energía que cede después durante el periodo de descarga.    

Condensator tekening.png
                             Transformador

Transformer.filament.agr.jpgSe denomina transformador a un dispositivo eléctrico que permite aumentar o disminuir la tensión en un circuito eléctrico de corriente alterna, manteniendo la potencia. La potencia que ingresa al equipo, en el caso de un transformador ideal (esto es, sin pérdidas), es igual a la que se obtiene a la salida. Las máquinas reales presentan un pequeño porcentaje de pérdidas, dependiendo de su diseño y tamaño, entre otros factores.
El transformador es un dispositivo que convierte la energía eléctrica alterna de un cierto nivel de tensión, en energía alterna de otro nivel de tensión, basándose en el fenómeno de la inducción electromagnética. Está constituido por dos bobinas de material conductor, devanadas sobre un núcleo cerrado de material ferromagnético, pero aisladas entre sí eléctricamente. La única conexión entre las bobinas la constituye el flujo magnético común que se establece en el núcleo. El núcleo, generalmente, es fabricado bien sea de hierro o de láminas apiladas de acero eléctrico, aleación apropiada para optimizar el flujo magnético. Las bobinas o devanados se denominan primario y secundario según correspondan a la entrada o salida del sistema en cuestión, respectivamente. También existen transformadores con más devanados; en este caso, puede existir un devanado "terciario", de menor tensión que el secundario. 

Transformer Centre-tap Iron Core-2.svg










                                 bobina

Un inductor, bobina o reactor es un componente pasivo de un circuito eléctrico que, debido al fenómeno de la autoinducción, almacena energía en forma de campo magnético

Construcción

Un inductor está constituido normalmente por una bobina de conductor, típicamente alambre o hilo de cobre esmaltado. Existen inductores con núcleo de aire o con núcleo hecho de material ferroso (por ejemplo, acero magnético), para incrementar su capacidad de magnetismo.
Electronic component inductors.jpgLos inductores también pueden estar construidos en circuitos integrados, usando el mismo proceso utilizado para realizar microprocesadores. En estos casos se usa, comúnmente, el aluminio como material conductor. Sin embargo, es raro que se construyan inductores dentro de los circuitos integrados; es mucho más práctico usar un circuito llamado "girador" que, mediante un amplificador operacional, hace que un condensador se comporte como si fuese un inductor.
El inductor consta de las siguientes partes:​
  • Devanado inductor: Es el conjunto de espiras destinado a producir el flujo magnético, al ser recorrido por la corriente eléctrica.
  • Culata: Es una pieza de sustancia ferromagnética, no rodeada por devanados, y destinada a unir los polos de la máquina.
  • Pieza polar: Es la parte del circuito magnético situada entre la culata y el entrehierro, incluyendo el núcleo y la expansión polar.
  • Núcleo: Es la parte del circuito magnético rodeada por el devanado inductor.
  • Expansión polar: Es la parte de la pieza polar próxima al inducido y que bordea al entrehierro.
  • Polo auxiliar o de conmutación: Es un polo magnético suplementario, provisto o no, de devanados y destinado a mejorar la conmutación. Suelen emplearse en las máquinas de mediana y gran potencia.
También pueden fabricarse pequeños inductores, que se usan para frecuencias muy altas, con un conductor pasando a través de un cilindro de ferrita o granulado.

Funcionamiento de una bobina

Sea una bobina o solenoide, constituido por un conductor de longitud l y sección S, y que ha sido devanado en N espiras, por el que circula una corriente eléctrica i(t).
Aplicando la Ley de Biot-Savart que relaciona la inducción magnética, B(t), con la causa que la produce, es decir, la corriente i(t) que circula por el solenoide, se obtiene que el flujo magnético Φ(t) que abarca es igual a:
Si el flujo magnético es variable en el tiempo, se genera en cada espira, según la Ley de Faraday, una fuerza electromotriz (f.e.m.) de autoinducción que, según la Ley de Lenz, tiende a oponerse a la causa que la produce, es decir, a la variación de la corriente eléctrica que genera dicho flujo magnético. Por esta razón suele llamarse fuerza contra electromotriz. Ésta tiene el valor:
A la expresión se le denomina coeficiente de autoinducción, L, el cual relaciona la variación de corriente con la f.e.m. inducida y, como se puede ver, depende de la geometría de la bobina y del núcleo en la que está devanada. Se mide en henrios